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The Fréedericksz transition in a nonuniaxial, nonchiral nematic liquid crystal (LC) in the presence
of the electric E field is considered using the Curie symmetry principle. All possible symmetries of
(i) the LC point symmetry group G, (ii) the strong boundary LC orientation at the infinite plane-
parallel plates of slab, and (iii) the direction of the E field are analyzed. The free energy polynomial
J(ci) is expressed in terms of the invariant polynomials of components of the three-dimensional axial
vector c. Possible primary and secondary bifurcations are determined for all classes of nonchiral
nematic LC (biaxial, tetrahedral, cubic, and icosahedral). It is shown that different kinds of such
LCs, subjected to the E fields of different orientations, can be described by the same polynomial
J(c;), invariant with respect to the action of a symmetry group Gr: of the Fréedericksz transition.
In the framework of the symmetry approach, the influence of the thermal fluctuations of the nematic
directors on the Fréedericksz transition is studied and mean squares of these fluctuations are found.

PACS number(s): 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION

The absence of translational symmetry in the nematic
phase of a liquid crystal (LC) admits the point symmetry
groups—subgroups of O(3)—including the groups forbid-
den in crystalline lattice. The existence of nonuniaxial
nematic LCs was predicted [1,2] long before their dis-
covery in the lyotropic mesophase [3]. Later, using the
traditional conoscopic and calorimetric measurments, as
well as NMR and x-ray diffraction, various nonuniax-
ial phases in thermotropic nematic LCs were identified:
monoclinic [4,5], thombic [6,7], tetragonal [8], and cu-
bic [9]. The properties of the hypothetical icosahedral
nematic LC were described [10] and its orientational or-
der parameter was constructed [11]. Recently, the tetra-
hedral nematic LC (not yet observed) was discussed in
detail [12]. The experimental data on nonuniaxial ne-
matic LCs were first reviewed in [13]. The rhombohe-
dral, tetragonal, and cubic phases were also found in ly-
otropic LCs [14]. This variety of nematic LC of different
point symmetry groups motivated the development of a
theory of the physical properties (elasticity, flexoelectric-
ity, and hydrodynamics) for nematic LCs with arbitrary
point symmetry group [15-17]. The theory of linear de-
fects for most of the point groups was developed [18] in
the framework of a homotopical approach.

A great variety of nonuniaxial, nematic LC symmetry
groups may cause difficulties in their experimental identi-
fication in the vicinity of a phase transition from isotropic
liquid. Therefore it is important to describe the behavior
of nonuniaxial nematic LCs in an external electric field
E. The effect of the electric field has not been largely
studied experimentally in nonuniaxial LCs. Usually an
applied electric field was used as an orientation tool in
biaxial nematic LCs [5,19] in order to provide the cono-
scopic observation. In the case of a chiral, nonuniaxial
LCs, cubic blue phases exhibit different phase transitions
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under an electric field into uniaxial blue phases, hexago-
nal [20] or tetragonal [21]. Nevertheless, our knowledge
about the main physical properties, e.g., elasticity, of the
nonuniaxial nematic LCs is far from complete, which we
have for the uniaxial nematics. From the experimental
point of view, the study of the orientational instability of
a nonuniaxial nematic LC under an electric field (known
as the Fréedericksz structural transition) provides a sen-
sitive tool for finding some features of the LC inner sym-
metry as well as the elasticity moduli of LCs.

In the past decade, the Fréedericksz transition in a
nonuniaxial nematic LC has been considered first for the
cubic {22] and hexagonal [23] nematic phases. Later the
respective experiments were carried out in blue cubic
phases of LCs [24]: the orientation of cubic LCs pre-
dicted in [22] is precisely the same as that observed in
[24]. The theoretical approach [22,23] was restricted to
finding the critical values E; of the fields. The stability
of inhomogeneous nematic structures appearing in fields
greater than F; was not considered. In terms of bifur-
cation theory, the study was restricted to finding only
the primary bifurcation points. The fields beyond the
primary bifurcation have been analyzed for rhombic [25]
and tetrahedral [12] nematic LCs subjected to the ex-
ternal field E. The existence of two successive structural
transitions (the primary F; and secondary E2 bifurcation
points) was shown and the necessary conditions for the
existence of a nonzero threshold transition were found. It
was shown that the field E should be directed along the
rotational axes of an unperturbed nematic LC. The gen-
eralization of this problem to the nonuniaxial nematic
LC of arbitrary point symmetry group Gy is part of
the present author’s program of constructing the con-
tinuous theory of nematic LCs of arbitrary symmetry
[11,12,17,25]. In the present paper, arbitrary homoge-
neous boundary conditions and the arbitrary direction
of the E field are taken into account in addition to the
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arbitrary point group Gy. This variety of initial con-
ditions demands a more general approach in the anal-
ysis than the cumbersome variational methods used in
[12,22,23,25]. The approach taken is based on the Curie
symmetry principle and the theory of an integrity basis
of invariant polynomials [26].

The influence of thermal fluctuations of the nonuniax-
ial nematic directors on the field dependence of the order
parameter near threshold is of special interest. In the
mid 1970s Guyon [27] showed that the Fréedericksz tran-
sition in the uniaxial nematic LC cell is analogous to the
second-order phase transition in thermodynamics. This
approach was extended further in [28] to the analogs of
the first-order transition and the isostructural transition.
The next natural step was to consider thermal fluctua-
tions of the uniaxial nematic director: it was shown [29]
that the Fréedericksz transition in the ordinary uniaxial
nematic (Gny = Door) with homeotropical boundary ori-
entation is equivalent to the two-dimensional continuous
Ising model (d = 2,n = 1) with one-component spins,
which leads to the corresponding critical Onsager indices
in the vicinity of the threshold field E;,. The experimen-
tal data [30] on the anomalous birefringence in uniaxial
nematic LC in the vicinity of the Fréedericksz transition
also evidenced that consideration of only a uniform static
tilt of the director might be insufficient for a correct ex-
planation of the experimental results. Recently [31] the
energy of director fluctuations at the Fréedericksz tran-
sition in uniaxial nematic LC was estimated. The influ-
ence of the symmetry of nonuniaxial nematic LCs on the
choice of the model of a phase transition equivalent to the
Fréedericksz transition was not discussed. [An equiva-
lence of the Fréedericksz transition in tetragonal nematic
LCs (Gn = Dyp) to the two-dimensional continuous XY
model with two-component spins (d = 2,n = 2) was sug-
gested [32].]

We restrict our treatment to study of the Fréedericksz
transitions in nonchiral nematic LCs with tensor order
parameters Q,, of w rank, where w > 2, since the chi-
rality of the nematic LC gives rise to the spatioperiodi-
cal distortion of Helfrich-Hurault type [33,34]. Thus we
do not deal with LCs of pyroelectric symmetry classes.
The nonchiral LC symmetry groups are [12] uniazial
(Drds D(k+1)h> k > 2), biaxial (D2p), tetrahedral (Tgq), cu-
bic (Th,On), and icosahedral (Y3).

The objective of the present work is to describe pos-
sible nonchiral nematic structures and types of the
Fréedericksz transitions between them in the presence of
the electric field. All possible symmetries of the nonchiral
LC point group Gy and of the homogeneous directions
of E field are considered. The strong anchoring of the
nematic directors at the boundaries and their arbitrary
homogeneous orientations are assumed. The influence of
the thermal fluctuations of the nematic directors on the
Fréedericksz transition is taken into account.

II. STATEMENT OF THE PROBLEM

In the absence of an external field E, the distribution of
LC directors is homogeneous in the infinite plane-parallel
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layer of a nonchiral nematic LC belonging to one of the
symmetry groups Gy listed above. Now suppose that
the layer is subjected to a homogeneous external electric
field of arbitrary orientation. The strong anchoring of
the directors at the boundaries is assumed to be of an
arbitrary homogeneous orientation. In a general, non-
symmetrical case, this leads to a wide variety of orienta-
tion parameters and, as a consequence, to the continuous,
nonthreshold structural Fréedericksz transition. For ex-
ample, as shown in [25], the nonzero field threshold of
the Fréedericksz transition in an orthorhombic nematic
LC (Gn = D3p) holds only when the field E is directed
along the rotational axes C5 of an orthorhombic nematic
LC.

The continuous theory of a nonuniaxial nematic LC
was constructed [17] by introducing at each point P(r)
of the nematic phase a triplet of the unit vectors e’(r), i =
1,2, 3, connected by six relations imposed on the scalar
products (, )

(e',€%) = (ij - (1)

The expression for the free energy density Fg, of an
elastically deformed, nonchiral nematic LC of the point
symmetry group Gy is [17]

2F¢g, = Z A% (e',rot e’ )(e*,rot €') , (2)
4,4,k 1

where Af‘} is a fourth-rank tensor, symmetrical with re-
spect to permutation of the upper and lower indices
A% = AY,. In the general case (triclinic symmetry) this
tensor has 45 independent coefficients. This number is
reduced for any finite symmetric group Gy, leading to
relations between the different components Af]’ These
relations can be found [17] for each group Gn, by apply-
ing symmetry operations of the Gy to the pseudoscalar
products (e’,rot e’). [For the chiral nematic LC, the
scalar term }_, . kij (e?,rot e?) should be added to (2).
This term also admits a similar symmetry analysis. For
the chiral, nonuniaxial nematic LC, such an analysis was
done recently in a cumbersome manner [36].]

The orientational part W,, of the energy density of the
interaction between nematic LCs with the order param-
eter Q,, and the external field E can be expressed as

Wy = QuewE", (3)

where the dielectric “permittivity” £,, of the nematic LC
appears as an interaction constant and E" is the wth
degree of E. Let us derive the W,, term for every point
group G of the nonchiral nematic LC more precisely.
We will take advantage of the usual parametrization of
tensors Q,, by means of M unit vectors n™ constituting
a star of vectors, invariant under the action of the sym-
metry operations of the corresponding point group Gy.
Naturally this star n™ can coincide with a basic triplet
of the unit vectors e’ as in the case of biaxial and cu-
bic nematic LCs (M = 3), but it also can be distinctive
as in the case of tetrahedral (M = 4) and icosahedral
(M = 15) nematic LCs. In the last case, of course, there
are linear relations in the set of M vectors n™, providing
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nevertheless a very convenient expression for W, to op-
erate with. Using the expressions for Q2 [2], Q3 [12], Q4
[37], and Qe [11] we obtain, for the w = 2 nematic LC of
the biazial symmetry group Gy = Dap,

M=3 M=3
Q=Y gmnnP —355) , > agm=0,
m=1

m=1

M=3 M=3
W2b = Z €2m<nm)E>2 ’ Z €2m = 0 ’ (4)
m=1 m=1

and of the uniazial
GN = DkdvD(k-&—l)h,k > 21

symmetry group

Qzu = qo (nin; — 3 8i5) , Way = e24(n,E)?;  (5)

for the w = 3 tetrahedral nematic LC Gy = Ty,

M=4 M=4
Qs=u Z ny'ning , Wi = Z eam(n™,E)®; (6)
m=1 m=1

for the w = 4 cubic nematic LC Gy = T}, Oy,
M=3
Qi=r | ) n'nfniny
m=1

— 1 (655081 + 51 + 6u16k) |

M=3

Wi=Y cam@™E); (7)

m=1

and for the w = 6 icosahedral nematic LC Gy = Y,

M=15
Qe =s [ Z ntnrngn ny ng
m=1
_’/Z 5aﬂ5‘7p5u{|
M=15
Ws = esm(n"‘,E)ﬁ y (8)
m=1

where ¢o and g¢,,,u,7,s are moduli of the tensor order
parameters Q3, Qs, Q4, Qs, respectively. Further, we will
accept that all moduli are included as multipliers in the
corresponding values of the dielectric permittivity e,,. In
the expression of tensors Q. we have used M unit vec-
tors n™. In Qg these vectors are directed along three
rotational axes C5 of a rectangular parallelepiped, in Q3
along four rotational axes C3 of a tetrahedron, in Q4
along three rotational axes Cy of a tetrahedron or C4 of
a cube, and in Q¢ along fifteen rotational axes C, of an
icosahedron. In Qg six greek indices «, 3, ...,v take all
noncoinciding values of six latin indices 4,7, ...,t. This
list of order parameters exhausts all possible nonchiral
nematic LC phases.

The free energy of a deformed nematic LC of point
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group Gy in the E field, calculated per unit area of the
surface of the plane-parallel liquid crystal layer, is ex-
pressed by the functional

1 L
J= EZ/_L(FGN + W) dz, 9)

2L being the thickness of nematic layer. The boundary
conditions for strong anchoring are

e(xL) = e . (10)

The standard approach to the problem is to derive
appropriate Euler-Lagrange equations for the variational
problem with the functional J and the holonomic rela-
tionship (1). That leads to a system of nonseparable
nonlinear differential equations for the functions e'(z).
This approach makes it possible to identify the nature
of the functions minimizing J and satisfying the condi-
tions (1) and (10), which is equivalent to the application
of the Ritz variational method. It leads to an algebraic
polynomial of several variables ¢; to be investigated by
simple analytic methods. That approach was realized
for biaxial [25] and tetrahedral [12] nematic LCs. It was
also shown that the number of independent variables is
equal to 3 and c; are the amplitudes of the first modes
in the Fourier-cosine expansion of the three correspond-
ing Euler angular coordinates 7;(z) describing the spatial
orientation (Fig. 1) of LC directors e™(z),

oo
7:(z) = c;cosqz + Z@k(cj)cosk qz, 1,] =T,Y,z .
k=2

Here ®;(c;) is a homogeneous polynomial of kth order
with respect to the variables c¢;. It can be determined
by solving the corresponding set of an interconnected
Euler-Lagrange equation. Finally, it was also noticed
that the c; can be considered as components of the three-
dimensional axial vector €. Obviously, the existence of
the three-dimensional axial vector that describes the spa-
tial orientation of LC directors can be generalized to the
nonchiral nematic LC of the finite arbitrary point sym-
metry group Gy. Thus the structural (nonthermody-
namic) order parameter of nonuniaxial nematic LCs at

FIG. 1. Perturbed molecular “hedgehog.”
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the Fréedericksz transition is a three-dimensional axial
vector c.

For the ordinary uniaxial nematic with a continuous
symmetry group Doop, only two independent variables c;
are essential. The geometry of the Fréedericksz transition
in such a nematic LC can be described with one angular
variable, e.g., a planar nematic LC in a homeotropic field.

ITII. THE CURIE PRINCIPLE
AND THE SYMMETRY
OF THE FREEDERICKSZ TRANSITION

A realization of the approach, discussed in the preced-
ing section, for the nonuniaxial nematic LC with arbi-
trary point symmetry group Gy, strong anchoring of the
LC directors at the boundaries with arbitrary symmetry,
and arbitrary orientation of the E field is cumbersome
from the computational point of view and does not yield
any perspective from the theoretical standpoint. The al-
ternative approach is the direct construction of the alge-
braical polynomial J(c;) by means of the integrity basis
of invariants I,(c;) built on the basis of components of
the three-dimensional axial vector ¢ for different symme-
try groups Gg, of the physical system (symmetry group
of the Fréedericksz transition). Let a polynomial J(c;)
read

J = ajci + Bij cicj + Vijk cicjcr
+6ijkl CiC;jCkCL L R (11)

Taking into account the axial nature of the vector ¢ one
can conclude that, in Jahn’s notation [38], the inner sym-
metry of the tensors aj, 8;j, Vijk, dijkt, etc., is

ai: €V;Bij [V vign: €[V s [V

Here [V™"] and € [V"] denote a symmetrical tensor and a
pseudotensor of n rank accordingly. A given point sym-
metry group Gr, leaves, in the above-mentioned classes,
a finite number of invariants I,,,(c;) [35].

The symmetry group Gy must be derived from the
symmetry Gpnp of nonuniaxial nematic LCs taking into
account the boundary conditions and the symmetry Gy
of the external field. According to the Curie symmetry
principle [35], Gp is a maximal common subgroup of
groups Gy and Gy,

Gg = max { Gne ﬂ Gy }, (12)

and the group Gy} is the maximal common subgroup of
Gn and D,

GNbZ max{G’N n Dooh}- (13)

Here D, is the symmetry group of two infinite parallel
planes. It is easy to show that the elasticity part Jq =
55 [ Faydz of the whole functional J is invariant with
respect to the action of the symmetry group Gyp. Thus
the group Gy plays the same role with respect to the
Jaq as the group G, does to the whole functional J.
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The rotational axis Co of Dy in the three-
dimensional space can coincide with the rotational axes
C,, of the point group Gy of a nonuniaxial nematic LC.
One also can consider the case when this axis C,, does
not coincide with any rotational axis (which means the
coincidence with the trivial axis C7). One can derive the
list of the groups G np by use of the relationship scheme
of the point groups G and their subgroups, considered
in [35] and supplemented with the icosahedral group. To
concretize the procedure of finding the groups Gg;, we be-
gin to deal with intermediate symmetry groups Dgp, Did,
as well as with high symmetry groups T4, Th, Op, Yy con-
tained in the well-known list of finite subgroups of group
O(3). Later in this section we will return to the excluded
groups Dyp, Diq with k > 6 to include them in the gen-
eral scheme. Thus we operate first with rotational axes
Ci, k < 6. The complete list of the groups Guy is pre-
sented in Table I, where the Schoenflies notation [35] of
point symmetry groups is used.

Now let us turn to the group Gy, which is relatively
easy to consider. From the symmetry point of view, there
is a difference between the interaction of the E field with
a tetrahedral nematic LC (Gny = T4) and with the other
kinds of LCs from the list (4)—(8) or, in other words,
between odd (w=3) and even (w=2,4,6) powers of the
field E in the W, term in (3). The single E field in
the W3 term preserves its natural symmetry Gy = Cooo,
whereas even w in W, raises it effectively to Gy = Doop.
There are several ways to intersect the E field with LC
boundaries, leading to the different groups Gg:. Never-
theless, among the 14 point groups Gy listed in Table
I, there are only two, C; and Cj, that result in the iden-
tity Grr = Gnp after their intersection with Gy, inde-
pendently of the direction of the E field. For the other
12 groups Gnp this is not true. Three different orienta-
tions of the E field with respect to the LC boundaries
have been distinguished traditionally: homeotropic, pla-
nar, and oblique. By means of symmetry rules [35] we
obtain the following.

1. Homeotropic orientation of the E field. For w =
2,4,6,

Gr = max { Gno ﬂ Deon } = Gnwp (14)

and for w = 3,

TABLE I. Symmetry groups Gns = max{ Gn n Door }.

w GN Cl Cz Cs C4 Cs CG
2 Dzh Ci D2h

2 D34 C; Can D3gq4

2 D24 C1 D D2q4

2 D3y, (o C2y Dsp

2 Dyp C; Dap Dy

2 Den C; Da2p, Desr
3 Ta C C3y D24

4 Th C; Dz Cs;
4 Ohn C; Dap D34 Dyp

6 Y C; D2y, D3g D5y
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_ _ sz ifGszDZd
Gr = max { Gne ﬂ Coov } = { Cs, if Gnp = Cs,.

[For nonchiral tetrahedral nematic LCs (w = 3) the sym-
metry groups Gg, of the Fréedericksz transition were ob-
tained in [12].]

2. Planar orientation of the E field. The middle sym-
metry of the main part of point groups Gy, makes it
necessary to divide this case into two: (a) the E field is
directed along a rotational axis Cy of an unperturbed LC
or is situated in its symmetry plane (e.g., for C21) and (b)
the E field does not coincide with any symmetry element
of the group Gnp. For w = 2, in accordance with cases
(a) and (b) the groups Gns = D24, D3g, Dan, Dsn, Den
give rise to the relations

D2d7D3h: GFr(a) = GFr(b) = D27
D34, Dyp, Den: GFr(a) = GFr(b) = Dy, (15)

due to azimuthal degeneration of the W, term with re-
spect to the direction of the E field in the plane. The
group Cy; also gives rise to the identity Gy = Cap due
to the relation Cy; C Doop, when the rotational axes Co
of both these groups are mutually orthogonal. The re-
maining three groups Cz,, D3, Dyp, lead to the following

groups Gry(a); Grr(b):
Czv: Grr(a) = Cav, Gre(p) = Co;
D;: Grr(a) = D2, Gre(py = C2;
D2p: G¥r(a) = D2n, Grro) = Con - (16)

For w = 3,

C3y: Gre(a) = Grev) = Cy;5

D24: Gre(a) = D2, Grrp) = Ca2 - (7)
For w = 4,

Dy : GFr(a) = Djp, GFr(b) = Cap;

C3:: Gre(a) = Gre(p) = Ci;

Dan: Gre(a) = D2ny Grev) = Can;

ng: GFr(a) = Cgh, GFr(b) = Ci. (18)
For w = 6,

Dop: Grr(a) = D2n, Grep) = Can;

D34: Gre(a) = C2h, Grr(p) = Cs;
Dsq: Gpr(a) = Cony Grr(p) = Ci. (19)

3. Oblique orientation of the E field. For w = 2,4,6,

C; ifC; € Gnp
C; otherwise,

GF,= max{GanCi}z{

and for w = 3,
Gr = C . (20)

Thus we have only 15 symmetry groups Gg. of the
Fréedericksz transition: 14 of them enter into the list of
Gnb and one (C;) appears in (17) and (16). The list
of the external field orientations leads to the most wide
variety of symmetry groups Gg, of the Fréedericksz tran-
sition only when the field E is oriented homeotropically
to the LC boundaries; then the Gg, and Gy} groups co-
incide. In the other cases, the groups Gg, are only a part
of the presented list (Table I) and also can include the
monoclinic group C,.

Return now to the uniaxial nematic LC phases (w = 2)
of the point groups Gnx = Dgp, Drq with arbitrary k. It
is well known from a crystallographic point of view that
it is more convenient to operate with even and odd k
separately. Computing the groups Gyp in accordance
with (12), one easily obtains, for C, || Ch,

GnNbo(D2nn) = GNo(D(2n+1)d) = Ci,
GnNbo(Dznd) = GNp(D2nt1)n) = Ci

and for Cy || Cq,

Gno(D2nn) = Dan, GNo(D2na) = Do,
GNb(D@nt1)n) = C2v, GNo(D(2n41)a) = Can -

These groups were already listed in Table I. The new
groups G np appear as a result of operating with the ro-
tational axis Co of the group Dy, directed along the
rotational axes Cj, or Ca,4; of the considered nematic
LC phases. In this case we really obtain Gn,(Gn) = G .
Now the last step is to find the corresponding groups
Gpy. It is easy to show that for the homeotropic orienta-
tion of the E field these groups give rise to the identity
Gy = Gnp; the planar orientation of the field causes
relations similar to (15),

D3kd, D(2k+1)n: GFr(a) = Gre(b) = D2;
D(2k+1)ds Dakn: Grr(a) = Grr(v) = Dan;

and an oblique orientation of the field leads to the rela-
tionship (20) for w = 2.

TABLE II. Symmetry groups Gr: for ordinary uniaxial nematic Gy = Deon. h is an orthogonal
vector to the LC boundary plane and [h, e, E] is a mixed product of the three vectors h, e, and E.

Initial
orientation e homeotropic e planar e planar e oblique e oblique
E homeotropic Doon Dapn Dap Can Can
(e,E) =0 (e,E) #0 [h,e,E] =0 [h,e,E] #0
E planar Dgh Dzh Czh Czh C,'
[h,e,E] =0 [h,e,E] #0 [h,e,E] =0 [h,e,E] #£0
E oblique Can Cah C; Can C;
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We complete this section by including in the present
scheme the Fréedericksz transition in the ordinary uni-
axial nematic with symmetry group Gy = Dsn. This
case belongs to the interaction degree w = 2. In Table II
we present the symmetry groups Gy, of the Fréedericksz
transition in the uniaxial nematic LC for three possi-
ble orientations—homeotropic, planar, and oblique—of
the e director and the E field with respect to the LC
boundaries. Thus, in this case, we have only four differ-

ent symmetry groups G, of the Fréedericksz transition:
DoohyDZhaCZhaci-

IV. STATIONARY STATES
AND STRUCTURAL TRANSITIONS

Let us construct a free energy polynomial J of a de-
formed nonchiral nematic L.C subjected to an E field of
a specified orientation with respect to the LC bound-
aries. For this purpose let us use the integrity basis
of the invariants I,(c;) [35,39], built on the basis of a
three-dimensional axial vector ¢ and invariant with re-
spect to the action of the symmetry groups Gg, where
CpCOs ¢ = ¢, and ¢, sin ¢ = ¢y. According to the trigono-
metric identities [40], we can represent

2m<k
k _ m 2m _2m k—2m
c, coskg = E (=)™ C™ ™ e T
m=0
2m<k-—1
k . m 2m+1 2m+1 k—2m-—1
c, sink¢ = E (-n)™cy Cy cy ,
m=0

where C}* are the binomial coefficients. The limiting case
of the ordinary uniaxial nematic LC Gy = Dp, which
follows from Dy by taking the limit & — oo, leads to
only two independent invariants of second degree

2 2

2, &+ . (21)

According to the Landau theory of phase transitions,
the main contribution of the W,, term to the polynomial
J(c;) is due to the sign alternating coefficients of the
quadratic invariants (¢?K — £, E¥)|c|?, where |c|> = cZ
for the one-component order parameter and |c|> = ¢% =
c2 + cf/ for the two-component order parameter, K is
a linear combination of the elasticity modules Afjl, and
g = 37 is the wave number. Let us illustrate the last
statement by some examples. The term quadratic in c;
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0 Ci

FIG. 2. Bifurcation tree of the Fréedericksz transition in a
nematic LC with low symmetry.

for the biaxial nematic LC Gy = Gny = Gr = Dap,
reads [25]

blci + bchl + bgcz, (22)

where

by = QZ(K1 + Ka3) — 52,1E2 )
by = qz(Kz + Ki3) — 82,2E2 )
by = ¢*(K11 + Ka2) — e23E% .

K;,K;;, and e3; are, respectively, the elasticity mod-
ules and dielectric permittivities of biaxial nematic LCs.
The term quadratic in ¢; for the tetrahedral nematic LCs
Gy = T4 and Gy = Ggr = Cs, reads [12]

ti(c2 + ) + tac?, (23)

where
tl = q2(3K1 +K2 + 2K3) —€3E3 s tz = 2q2(2K2 +K3) .

K; and €3 are the elasticity modules and dielectric per-
mittivities of tetrahedral nematic LCs.

Further study of the polynomial J(¢;) allows us to
answer the following questions: (i) Do the bifurcations
(structural transitions) exist at the Fréedericksz transi-
tion described by the symmetry group Gg.? (ii) If the
bifurcations exist, what kind (primary or secondary) are
they? (iii) What orders of structural transitions occur-
ring at the bifurcation points exist? The main features of
the polynomials J(¢;), invariant with respect to the cer-
tain symmetry group G, are well known [26] from the

TABLE III. Invariant polynomials.

Symmetry group Gpr

Integrity basis of invariants Ip,(c;)

C1,C;
Cz,Can
C2v, D3z, D2
Cs;
D2ra, Darn
Czk+1)v, D(2k+1)d

D2k+1)n, D2(2k+1)n

e

c2,c2, cf,k"'l cos(2k + 1), c,cf,’”'1 sin(2k + 1)¢

2

) Cp

CzyCzy Cy
Cz, CZ’ Cfn CzCy
sz Cfm C?]y czcﬂ?cy
Cz, cf,, cf, cos 3¢, c?, sin 3¢

c2,c2, cf,k cos 4k g, c,c;’,k sin 4k¢

25D cos 2(2k + 1)¢, cacs Y sin 2(2k + 1)¢
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FIG. 3. Bifurcation tree of the Fréedericksz transition with
symmetry group Grr = Csy.

theory of the phase transition in solid states. Therefore,
we omit intermediate calculations and present only the
main features of these transitions.

The presence of a linear invariant c, in I,,(c;) for point
groups C1,C;, Ca, Cap,Cs; leads to the continuous non-
threshold Fréedericksz transition. In other words, the
disturbance of homogeneous LC structure occurs in any
weak E field. As shown in [28], one can expect in such a
system only finite jumps in the order parameter between
different bifurcation branches (Fig. 2).

The presence of the cubic invariant ¢2 in I, (c;) for
point groups Cs,, D34 leads to the strong first-order tran-
sition. Besides, in such a system a secondary bifurcation
is permitted as a first- or second-order transition (Fig. 3).
It must be noted that the Fréedericksz transition in rhom-
bohedral nematics of the considered groups can occur as
a second-order transition at the manifold of a small di-
mension, defined on the multiparametrical space of the
problem. This kind of transition is similar to the thermo-

Cy

FIG. 4. Bifurcation tree of the Fréedericksz transition with
symmetry group Ggr = Ca,, w = 2.
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Cy

FIG. 5. Bifurcation tree of the Fréedericksz transition with
symmetry group Grr = Ca,, w = 3.

dynamical second-order phase transition from isotropic
liquid into the biaxial nematic at the tricritical point,
where isotropic liquid, biaxial nematic L.Cs, and two uni-
axial nematic LCs (calamitic and discotic) coexist with
a very narrow stability region of biaxial nematic in the
vicinity of the transition [2].

The presence of the nonlinear invariant CzCyC, in
I, (c;) for point groups Cs,, Dy, Dy allows, neverthe-
less, in the vicinity of the primary bifurcation point the
second-order transition [25], provided coefficients at the
invariants of fourth degree, which enter the polynomial
J(c;), are of the correct sign. In the vicinity of the
secondary bifuracation points the Fréedericksz transition
can evolve either as a first- or second-order transition
(Fig. 4). The case of the group Cs, with the cubic term
E3 of the E-field interaction with a tetrahedral nematic
LC, which leads to the specific bifurcation tree (Fig. 5),
has to be described separately. For the intermediate sym-
metry groups Gr = Dag, D(xq1)a, Drn (K > 3) the
nonlinear invariant cf*! does not forbid the existence
of second-order transitions (Fig. 6) at the primary and
secondary bifurcation points.

Since the rotation around the axis C, is not relevant
for the continuous symmetry group Gg. = Doop, the vari-
able ¢, does not enter into J(c;). There is actually only
one quadratic invariant cf, describing deviation of the di-
rector e from the direction of the E field. Thus, in this
case there is only one bifurcation point [28], where the
Fréedericksz transition is of second or (taking into ac-
count an electrical conductivity [41]) first order (Fig. 7).
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FIG. 6. Bifurcation tree of the Fréedericksz transition with
symmetry group Grr = Dan.

V. THERMAL FLUCTUATIONS
OF THE NONUNIAXIAL NEMATIC DIRECTORS

Let us consider the disturbances of the Fréedericksz
transition due to the thermal fluctuations of nonchiral
nematic LC directors in the z-y plane. For this purpose
we take into account the two-dimensional gradients V. ,c
of the order parameter. Preserving the rigidity conditions
(1) of the nematic LC directors and the boundary condi-
tions of strong anchoring (10), we obtain an expression
for a total free energy J of a deformed, infinite plane-
parallel, nematic LC layer subjected to an external field

J= / /S () + §(Vaye:)] de dy | (24)

where S is a surface area of the LC layer (S > L?) and
¢; = ¢;(z,y), ¢ = z,y,z. Naturally, the invariants I,,(c;),
which were counted in Table III, also depend on the sur-
face coordinates z,y. In order to study the features of the
behavior of the vector order parameter ¢ in the vicinity
of the transition into the low symmetrical phase, it is suf-

E E

E*

o] Ci 0 Ci

FIG. 7. Bifurcation tree of the Fréedericksz transition in a
uniaxial nematic LC: (a) second order; (b) first order.
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ficient to use for the angular coordinates 7; a one-mode
approximation in z,

7i(z,y,2) x ¢;(z,y)cosqz, i=uz,y,2, (25)
and to restrict ourselves to the quadratic approximation
in ¢; and V 4c.

As in Sec. IV, let us use the integrity basis of the in-
variants, built on the basis of the two-dimensional gra-
dients V. ,c and invariant with respect to action of the
symmetry groups Gp,. Since the influence of the fluctua-
tions is critical in the vicinity of the second-order transi-
tion (Ginzburg criterion) and negligible in the vicinity of
the strong first-order transition or the continuous non-
threshold transition, we will pay attention here to the
biaxial, tetragonal, and hexagonal symmetry groups G,
discussed in Sec. IV. These point symmetry groups admit
the general expression for the gradient part 7(V, 4¢;) in
the functional J as follows:

j= "‘l(ach':)2 + a2(aycy)2 + a3(0z¢z)(0ycy)
+a4(6yca:)2 + aS(Ba:Cy)z + ae(0ycz)(Ozcy)
+a7(azcz)2 + aS(aycz)z ’ (26)

where the coefficients a; are independent for the point
groups Ca,,, D2, and are related for the intermediate sym-
metry groups Dag, Dyap,

ay=az, a4 =4as, Gy =ag, (27)

and D3y, Dep,
a1 =az, ag=as, a7y =ag, a1 =az+as+ag. (28)

The coefficients a; are the linear combinations of the elas-
ticity modules of nonuniaxial nematic LCs. As can be
shown for the biaxial nematic LCs with the free energy
density Fp,,, derived in [17],

3 3
2Fp,, = Z K; div &' + Z K;; (e',rot €)% | (29)
i=1 %,7=1
the coefficients a; read

a; = K3 + K31, az = K3+ Kj2, a3 = 2K3,
as = K33 + K11,a5 = K3z + K22, asg = —2K3s3,
a7 =Ky + K31, ag=K; + K3z . (30)

In order to reduce the functional J to the canonical
form let us perform the Fourier transform

1 . .
Cj(x’y) - ﬁ Z Njk €Xp (’L <k1p)) y J=T,Y,2,
k

(31)

where (k,p) = ksx + kyy , p and k are the vectors in
real and reciprocal two-dimensional space, respectively.
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Inserting now the last transform into the expression for
J and integrating with the substitution of the integral
representation of the § function

s~ K) = 5 [ [ expli (k=11 s, (32

we find a quadratic form in six-dimensional space
(M5.0e> M5 3c)

1
J=3 Ek:(gm::lnw,klz + GayTe k7 x

+3yy|my x| + FyzTly KNz x + gezn=xl?) (33)

where

Goe = a1k2 + a,4kZ +b1, gyy =askl + azk; + b2,
Gy = a3kzky7 Gyz = aﬁkzkya
92z = qui + askj + b3 3 (34)

and the coefficients b; were defined in (22). Diagonalizing
the quadratic form for J we obtain in the new coordinate
basis (v x, u]’-‘,k)

1
T = 5 30 Olvesl® + Ml + Alvesd®) - (39)

where

A, =92 + g0y + 92, + 92,
1
£[(gez — gyy)2 + (gay + gym)z]z
1
X[(gmm +gyy)2 + (gmy - gy-’c)2]2 ’

A =G, - (36)

Now it is easy to show that A2 > 0, A2 > 0. This fol-
lows from the definition of A, , and also from the iden-
tity A2 A2 = 4 (gay9ye — Gzalyy)? , Which can be eas-
ily checked. The equipartition theorem gives the mean-
square fluctuation (|v;x|?)

¥
<IV.’i‘kl2> = T_ y J =T, Y,2. (37)
J

Taking into account the inequalities g,., # gyy and
9zy 7# gy, following from the definition of g;;, we can
conclude A, # Ay even in the case of the intermediate
symmetry groups Gg.. The last statement means that
the Fréedericksz transition occurs as a second-order tran-
sition that evolves via one of three one-dimensional irre-
ducible representations of the groups mentioned above.
Thus, taking into account the thermal fluctuations of the
LC directors in the Fréedericksz transition with symme-
try groups Gr = Dad, D(k41)d> Drn, k > 3 this leads to
the removal of the degeneracy of the order parameter c in
the z-y plane, which is orthogonal to the mean symmetry
axis. It is a consequence of the elasticity anisotropy of
the nonuniaxial nematic LC, where the elasticity modules
Af‘Jl arrange a fourth-rank tensor.
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It follows from (37) that the fluctuations of all three
modes v; behave in a critical manner in the vicinity of
the corresponding thresholds Eiy, j, which are determined
by the equations b; = 0, where b; are determined in
(22). In contrast to the scalar order parameter, here we
have in r space three correlation functions I';(ry,r2) with
their own correlation lengths £;. For the longitudinal
mode v, the correlation length has a standard form &, =
L (1-E?/EZ, ,)~°%. For two transverse modes v,y the
expression for ’ﬁm,y cannot be found analytically.

VI. CONCLUSION

On the basis of the phenomenological theory of ne-
matic LCs, the theory of the Fréedericksz transition in
nonchiral nematic LCs for all possible symmetries of LC
point groups G, with strong boundary LC orientation
at the infinite plane-parallel plates of slab and arbitrary
direction of an applied E field, has developed. The ad-
vantage of the integrity basis of the invariant polynomial
method for the symmetry group Gg, of the Fréedericksz
transition, which is built by taking into account the sym-
metry of the strong boundary conditions of LCs as well
as the symmetry of the external E field, has been em-
ployed. The number and the order of the bifurcations
in the Fréedericksz transition have been derived on the
basis of the simple group-theoretical considerations.

The thermal fluctuations of nonchiral nematic LC di-
rectors in the vicinity of the second-order Fréedericksz
transition, with intermediate symmetry groups Gg =
D24, D(41)d, Dkn, k > 3, lead to the removal of the de-
generacy of the order parameter in the plane orthogonal
to the mean symmetry axis. It is a consequence of the
elasticity anisotropy of the nonuniaxial nematic LC.

From the experimental standpoint the study of the
Fréedericksz transition in nonchiral nematic LCs pro-
vides another sensitive tool for the identification of the
inner symmetry Gy of LCs. The sequence of the struc-
tural transitions (the bifurcation points on the bifurca-
tion tree) leads to a decrease of the external symmetry
Gr of the LC cell. This is reflected in the change of
its optical properties, e.g., a birefringence. Such experi-
ments were carried out in blue cubic phases of LCs [24]:
the orientation of a cubic LC predicted in [22] is pre-
cisely the same as that observed in [24]. Unfortunately,
the author does not know other experiments where the
Fréedericksz transition was observed in nonuniaxial ne-
matic LCs. On the one hand, this is connected with
rather specific thermodynamic conditions that had to
be imposed on the LC, e.g., a very narrow temperature
gap where biaxial [3,7] and cubic [9] LCs exist. On the
other hand, it reflects a gradual decrease of pragmatic
interest to this branch (LCs) of condensed matter in the
past decade. Nevertheless, it is worth noting that during
the past decade the question about the inner symmetry
Gy of the quasicrystalline structure of the foggy blue
phase, where Gy is expected to be icosahedral [10], has
remained unsolved. It seems now that this foggy blue
phase could be a good candidate for examination of its
inner symmetry via the Fréedericksz transition. Indeed,



as shown in Table I, the icosahedral symmetry gives rise
to four different point groups Gnp in accordance with
the direction of the applied electric field along four differ-
ent rotational axes of possible order: Cy,C3,C3, and Cs.
These four groups Gny = C;, Dap, D34, Dsq correspond
to four different bifurcation trees Figs. 2, 4, 3, and 6,
respectively. Thus the experimental finding of four dif-
ferent kinds of Fréedericksz transition in the foggy blue
phase, which are similar to those mentioned above, could
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be good evidence for the existence of the icosahedral sym-
metry.
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